Skip to content

Fine-Tuning Examples

1. Llama Fine-Tuning

This example demonstrates how to fine-tune Llama 2 on a Q&A dataset.


1.1 Problem Configuration

  • Name: Llama Finetuning
  • Problem Type: text_causal_classification_modeling
  • Model Source: HF
  • Model Name: meta-llama/Llama-2-7b-hf
  • Secrets Blueprint: HF Meta (requires a token with access to meta-llama/Llama-2-7b-hf)

Problem Setup


1.2 Dataset

Dataset Configuration


1.3 Output Storage

  • Model Storage: HF
  • Model Name: llama-finetuned
  • Store Only LoRA Adapters: true
  • Secrets Blueprint: Write Token (token with write access to HF)

1.4 Run Configuration

  • Run Title: Run 01
  • Resources:
    • Accelerator: A10G
    • GPU Count: 1
    • Memory: 64
  • Tracking:
    • Experiment Name: Llama Finetuning
    • API Key: Generate from User > API Keys
    • Tracking Mode: after_epoch

Next Steps

  • Fine-Tuning UI – Create your own fine-tuning problems and runs.
  • Inference UI – Test your newly fine-tuned model in real-time.
  • Benchmarks UI – Compare performance against built-in or custom benchmarks.